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Microbial models with minimal 
mineral protection can explain 
long-term soil organic carbon 
persistence
Dominic Woolf1,2 & Johannes Lehmann  1,2,3

Soil organic carbon (SOC) models currently in widespread use omit known microbial processes, and 
assume the existence of a soC pool whose intrinsic properties confer persistence for centuries to 
millennia, despite evidence from priming and aggregate turnover that cast doubt on the existence of 
soC with profound intrinsic stability. Here we show that by including microbial interactions in a soC 
model, persistence can be explained as a feedback between substrate availability, mineral protection 
and microbial population size, without invoking an unproven pool that is intrinsically stable for 
centuries. the microbial soC model based on this concept reproduces long-term data (r2 = 0.92; n = 90), 
global soC distribution (rmse = 4.7 +/− 0.6 kg C m−2), and total global SOC in the top 0.3 m (822 Pg C)  
accurately. soC dynamics based on a microbial feedback without stable pools are thus consistent with 
global SOC distribution. This has important implications for carbon management, suggesting that 
relatively fast cycling, rather than recalcitrant, SOC must form the primary target of efforts to build SOC 
stocks.

Carbon (C) fluxes between the soil and atmosphere constitute a potentially large and uncertain source of carbon 
dioxide (CO2) emissions in response to rising global temperatures and land degradation. Conversely, soil organic 
carbon (SOC) is also receiving attention as a potential sink for atmospheric C through land-management prac-
tices that increase SOC stocks1. Predicting the impacts of environmental change or land management on SOC 
fluxes depends on the application of models. However, confidence in these predictions is hampered by the fact that 
the current generation of models do not represent the mechanistic processes that are known to occur, and also by 
the uncertainties in current models2,3. It has been argued that improving confidence in SOC projections requires 
a transition from first-order decay models to models that explicitly account for the activity of soil microbial 
communities4–6. Accordingly, a number of microbially-explicit SOC models have emerged in recent years3,7–12.  
Despite this recent interest in microbial models, traditional first-order decay models remain the mainstay of 
SOC modeling in most applications including Earth system models (ESMs), in part because microbial models 
have not yet demonstrated the reliability to provide robust predictions over long time scales and wide ranges of 
environmental conditions12.

SOC turnover has been modeled as a first-order decay process since at least 194513. It was recognized early on 
that empirical fitting of a first-order model to SOC decomposition required multi-pool models in which differ-
ent fractions of SOC decay with different mean residence times (MRTs)14,15. Such models are more than just an 
empirical convenience. They also reflect a conceptual paradigm that different “types” (in the broadest sense) of 
SOC have different representative MRTs. Interpreted in this way, a fraction of SOC appears extremely persistent, 
represented, for example, in the CENTURY model as a passive pool with an MRT of 400 to 2000 years16, or in the 
RothC model as an inert pool with an infinite MRT17.

Considerable effort has been expended in determining the physical or chemical characteristics that confer the 
presumed variation in MRT between pools. The dominant paradigm until the late 20th century was that microbial 
decay products were more chemically recalcitrant than the parent organic matter18. More recently, it has become 
recognized that simple, readily-decomposable molecules are found within even the oldest SOC fractions, and that 
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humic macromolecules were a product of extraction processes rather than existing in situ4,19. This observation, in 
combination with evidence that soil microorganisms can degrade any SOM, regardless of its chemical structure, 
when they can access it20,21, have eroded the chemical-recalcitrance paradigm in favor of a physical-protection 
paradigm4,19. The physical-protection concept proposes that SOC persistence is conferred by interactions with 
soil minerals, both by adsorption to reactive surfaces and by occlusion within aggregates4,20,22–24.

However, it remains unclear whether physical protection alone can fully explain the long persistence of SOC 
in slow-cycling pools. For example, there is a large discrepancy between the hundreds to thousands of years MRT 
of the most persistent pool in first-order models, and the turnover rate of soil aggregates, which have MRTs in 
the range of weeks to months25,26. Another cause for doubt stems from priming, whereby addition of a new C 
substrate increases (positive priming), or decreases (negative priming) the respiration rate of the already-existing 
SOC. Addition of fresh readily-metabolizable substrates typically cause positive priming27,28, except over short 
time frames where substrate switching can sometimes lead to negative priming as microbes switch their activity 
to metabolization of the new food source. While several mechanisms may contribute to priming27, the frequent 
observation of positive priming points to a single underlying fact—that the primed SOC was accessible to micro-
bial decomposition, but its decomposition was previously limited by some factor that the new substrate was able 
to alleviate. Positive priming of subsoils by addition of fresh organic matter (FOM) is of particular relevance to 
the long-term stability of SOC29. Subsoil OC is usually considered to comprise mostly stabilized SOC, as indicated 
by its increasing radiocarbon age with depth22,30. Positive priming of subsoils thus involves the mineralization 
of old (and, therefore, generally assumed to be stabilized) SOC28. This is supported by observations that the 14C 
age of primed CO2 is comparable to that of the bulk SOC29, and that repeated FOM additions result in repeated 
priming rather than depleting a small more readily-primed SOC pool31. Thus, a substantial fraction of what is 
usually thought of as stabilized C is readily accessible to microbial mineralization once constraints on microbial 
population and activity are alleviated.

Here we utilize a novel microbially-based SOC model (SOMic version 1.0) in which microbial interactions 
with mineral-associated organic matter remove the need for an intrinsically slow-cycling SOC pool, while still 
predicting long-term experimental data, and global SOC distribution. SOMic assumes that microorganisms 
take up only dissolved OC (DOC), because substrates must be in solution to cross the cell membrane (Fig. 1). 
Microbial uptake of DOC competes with sorption to minerals and occlusion within aggregates, whose rate is 
determined by mineral surface area (approximated by the clay fraction). Microbial uptake is then apportioned 
between growth and respired CO2 according to microbial C-use efficiency, which is dependent on tempera-
ture8,32–34. Organic matter inputs undergo depolymerization and/or dissolution before entering the DOC pool. 
Rates of depolymerization and dissolution of organic matter, and desorption of mineral-stabilized SOC are medi-
ated by microbial enzyme activity according to reverse Michaelis-Menten dynamics35.

Results
SOMic was calibrated and validated using 100–150 y time-series data from 22 long-term agricultural experiments 
(see Methods). The 22 sites were randomly assigned into 11 calibration sites and 11 validation sites, with the cali-
bration and validation sets containing 90 and 75 data points, respectively (Fig. 2). Modeled SOC concentrations 
in the validation set correlated well with the observed values (r2 = 0.92, p < 0.001; Fig. 2). While this correlation 
is comparable to that achieved by traditional 1st order models (for example RothC gives r2 = 0.92 when applied 
to the same validation set), it is notable that these results were obtained by SOMic without positing a highly sta-
ble SOC pool, thus demonstrating that the long-term dynamics of SOC can be explained by the interactions of 
microbial population size and activity with a mineral-associated organic matter pool that can cycle significantly 
faster than earlier models have required. The model pool with the longest base MRT (i.e., the MRT before it 
has been mediated by the microbial activity factor) is the mineral-associated carbon (MAC) pool, representing 

Figure 1. Schematic of microbial soil organic carbon (SOC) model SOMic 1.0. Carbon fluxes between pools 
are indicated by arrows, with fluxes whose rate constants are mediated by microbial enzyme activity indicated in 
orange.
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mineral-sorbed or -occluded SOC, whose base MRT varies from 5.5 y to 17 y for soil temperatures in the range 
20–10 °C (significantly faster than the slow or passive pools in the CENTURY model16 which have MRTs of 
20–50 y and 400–2000 y, respectively). Within the data set of these 22 long-term agricultural experiments, the 
microbial rate-modifying factor can increase the base MRTs by a factor of 1.05–2.8 (95% C.I., mean = 1.4), with 
the longest MRTs occurring at those locations and times with the lowest microbial population. The microbial 
carbon use efficiency (CUE) predicted by this calibration is 0.28 at 15 °C, with a temperature dependence of 
−0.0081 °C−1. These values compare well with literature values of CUE33,34 of 0.26–0.3 and its acclimated temper-
ature dependency32 of −0.008 °C−1.

Our findings provide strong evidence to counter the assumption that mineral protection is the primary mech-
anism responsible for long-term (greater than decadal) SOC persistence. We have demonstrated that longer-term 
persistence may be rather be conferred by a combination of a competition between mineral-sorption and micro-
bial uptake for available DOC, in combination with a microbial feedback whereby depleting the amount of easily 
metabolized organic matter leads to a decrease in microbial population and activity, which in turn lowers the rate 
at which remaining SOC is mineralized (Supplementary Information Figs 2 and 3). Conversely, the same mech-
anism in reverse allows the model to explain priming, as increasing the supply of fresh organic matter increases 
microbial population and activity, thus increasing the decomposition rate of other SOC pools. Although some 
previous studies have also proposed a similar role of microbial population and activity dynamics in SOC persis-
tence and priming10,29, this is the first time that the mechanism has been demonstrated to agree well both with 
long-term (>100 y) observations and with global SOC distribution.

To predict the global distribution of SOC in the top 0–0.3 m, the SOMic model was forced using the 
Community Earth System Model (Community Land Model (CLM) version 4.5) estimates of historic 
soil-temperature, soil-moisture, litterfall, and litter heterotrophic respiration from 1850 to 2010 (Supplementary 
Information Section 2.4) to predict the global SOC distribution (Fig. 3a). The global SOC distribution compares 
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Figure 2. Soil organic carbon (SOC) stocks in the top soil horizon of twenty-two long-term agricultural 
experiments in Rothamsted, UK (“bb”, and “hoos” treatments), Pendleton OR, USA (“Pen”), and Sanborn 
MO, USA (“San”). Circles indicate observations, and lines the model predictions. SOC was predicted using the 
SOMic 1.0 model, as the sum of the five individual model pools (SPM, IPM, DOC, MB, and MAC). Calibration 
data are indicated with an asterisk (*) after the label. The inset panel of observed versus predicted values 
includes only data from the validation set (n = 90).
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favorably with spatially-interpolated estimates of global SOC distribution such as the Global Soil Partnership’s 
Global Soil Organic Carbon (GSOC) map36 (Fig. 3b). The global SOC stocks predicted by SOMic using CLM forc-
ing data are within the range of estimated values from an ensemble of GSOC, the harmonized world soils data-
base37 (HWSD), and SoilGrids38 for all biomes, except tropical/subtropical coniferous forests where the SOMic 
estimate of 2.2 Pg C is slightly below the GSOC estimate of 2.5 Pg C (Fig. 4). Total global stocks of SOC in the top 
0.3 m predicted by SOMic were 822 Pg C, which is also within the range of values derived from the HWSD (817 
Pg C), GSOC (673 Pg C), SoilGrids (1190 Pg C), and the FAO/UNESCO Soil Map of the World39 (684–724 Pg C),  
(Fig. 4). These results demonstrate that SOMic provides robust estimates over a wide range of environmental 
conditions globally.

We have shown that models without slow or passive pools can explain most variation in SOC globally and over 
long times. However, a final question remains over whether such models are also compatible with the radiocarbon 
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Figure 3. Global soil organic carbon concentration to 0–0.3 m depth (a) predicted by SOMic 1.0 (as the sum 
of the five individual model pools; SPM, IPM, DOC, MB, and MAC), forced with Community Earth System 
Model values for climate and litter inputs over the period 1800–2010, (b) from GSOC v1.0 provided as a 
reference comparison, and (c) the difference between them (i.e., SOMic minus GSOC; rmse = 4.7 kg C m−2).
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ages observed in soil profiles. Although some previous studies have found that microbial SOC models are com-
patible with the observed increasing 14C age of SOC with depth10,40, these have included mineral-stabilized pools 
with much longer mean residence times than those in SOMic (1150 y in ref.10, and 265 y in ref.39). Despite having 
only faster-cycling pools, when forced with vertical DOC advection rates from soil hydrology estimates of the 
CLM, SOMic also predicts radiocarbon age profiles closely aligned with observations (for example, predicted 
versus observed radiocarbon ages at Rothamsted, UK at depths to 0 to 0.9 m give an adjusted r2 = 0.67, p < 0.001, 
n = 78) (see Supplementary Information Section 3 and Supplementary Fig. 1).

Discussion
Thus, we have shown that SOC models based on microbial population and activity dynamics, and without slow or 
passive pools, are compatible with observed SOC stocks, concentrations, distribution, and radiocarbon age. This 
does not ipso facto prove that such models are to be preferred over models that rely on slow and passive pools to 
reproduce the same observations. However, when considered in the context of observed priming of old SOC29, 
and relatively short aggregate turnover times25, this finding provides compelling support for the conjecture that 
we should rethink the balance of how we understand SOC persistence as being conferred to a lesser degree by 
mineral-stabilization and to a greater degree by ecological constraints than most previous models have assumed.

A recent inter-comparison study, which included four other microbial SOC models (CORPSE41, MIMICS42, 
MEND43, and RESOM44), has demonstrated that long-term model projections diverge depending on struc-
tural variations between models45. Important differences between models include the use of first-order, MM, 
reverse-MM, or equilibrium chemistry approximation kinetics; whether the model includes a DOC pool; whether 
microbial mortality rate is affected by MB density or soil moisture; texture-dependence of mineral protection; 
whether CUE varies with temperature or substrate; whether enzyme decomposition is included; and whether 
there exists a dormant microbial pool. The specific combination of structural features goes far to describing 
the differences between models, with alternative formulations representing alternative hypotheses that cannot 
yet be resolved45. Although the SOMic model described here differs from these other models in terms of its 
specific combination of features, it draws broadly from the same set of available hypotheses and assumptions 
summarized above. Distinctive features of the SOMic model are (1) that all biogeochemical processes depend 
on microbial activity (even sorption of DOC to minerals depends on the rate at which microbial activity cre-
ates DOC to sorb and the rate at which microbial uptake competes for DOC), and (2) that the desorption of 
mineral-protected SOC in SOMic has a base rate constant that is one to two orders of magnitude faster than in 
previous models which have predicted radiocarbon ages of subsoils in line with observations10,40. In addition to 
the structural variation between existing models, there are a number of potential model features which are not 
yet represented in any of these models, but which can be expected to further improve model performance over 
a broad range of environmental conditions and timescales. Additional features that may be expected improve 
performance of future generations of model include, for example, soil mineralogy46, mesofauna47, pH48, nutrient 
stoichiometry49, plant-microbe interactions50, and how the functional composition of the microbial community 
varies in response to factors like stress and substrate abundance51. Informing future model development by fur-
ther inter-comparison studies (for example looking at diverging model performance over a range of timescales 
from hours to centuries), in combination with a process of incorporating further processes that are not yet well 
represented, can be expected to lead to a rapid improvement in SOC models over the coming years.

In conclusion, the finding that long-term SOC persistence arises from microbial interactions with 
mineral-associated carbon, rather than from intrinsic resistance of the SOC to decomposition, has important 
implications for the management of SOC. This is particularly relevant in the context of the rapidly growing inter-
est in SOC’s potential role in climate-change mitigation, as for example exemplified in the 4 per mille initiative52. 
It has generally been assumed that recalcitrant carbon should form the primary target of efforts to build SOC 
stocks. Whereas, this new understanding suggests that management efforts to increase SOC will need to adapt by 
instead targeting the relatively fast cycling SOC that makes up the majority of SOC.
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Figure 4. Global soil organic carbon (SOC), 0–0.3 m depth, disaggregated by biome. Red, filled circles indicate 
predicted values from SOMic 1.0 (as the sum of the five individual model pools; SPM, IPM, DOC, MB, and 
MAC). Open black symbols indicate estimates from GSOC (squares), the harmonized world soils database 
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Methods
The SOMic v.1.0 model defines five SOC pools. 

•	 C1 is the carbon in readily soluble plant matter (SPM).
•	 C2 is the carbon in insoluble plant matter (IPM).
•	 C3 is dissolved organic carbon (DOC).
•	 C4 is mineral-associated organic carbon (MAC).
•	 C5 is the carbon in living microbial biomass (MB).

Inputs of fresh plant litter (L) to the soil are divided between SPM and IPM according to the readily-soluble 
fraction (fs). Decomposition products of all the pools enter the DOC pool (C3) before they are either taken up 
by microbes, or sorbed to minerals. Each of the pools (C1 to C5) has an associated decomposition rate factor (k’1 
to k’5), respectively. The decomposition rate factors k’1 to k’5 are not constants, but rather are modified from each 
pool’s base rate constant (k1 to k5) by rate-modifying coefficients that vary dynamically over time. All rate factors 
have rate-modifying coefficients for temperature and moisture. All decomposition rate factors except k’5 (for 
microbial biomass turnover) are also modified by a microbial rate-modifying coefficient derived from reverse 
Michaelis-Menten (MM) kinetics35. Turnover of microbial biomass is assumed to be first-order with microbial 
biomass, and not modified by reverse-MM kinetics. The rate factor (k’3) for removal of C from the DOC pool is 
also dependent on competition between microbes and mineral sorption, where fsorb is the fraction of C removed 
from the DOC pool that is sorbed to minerals. The sorption affinity of minerals for DOC is assumed to be a linear 
function of soil clay content. Microbial carbon uptake is partitioned between growth and respiration according to 
the microbial carbon use efficiency, which varies linearly with temperature.

The rates of change of carbon in each pool and the rate of CO2 efflux are shown in differential form below 
(Equations 1 to 6). Note that these equations are not first-order reactions, because the rate factors k′1 to k′5 are 
themselves functions of microbial biomass abundance through reverse-MM kinetics. A detailed description of 
how the various parameters and factors in the model were derived and calibrated is given in the Supplementary 
Information (Supplementary Methods).
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statistical methods. All summary statistics (r2, rmse, p-values, means and standard deviations) were calcu-
lated using base functions of the R programming language. The estimated uncertainty in rmse, expressed as 1 s.d. 
of the error, was calculated using Monte Carlo bootstrapping53, with 104 iterations and a sample size of n = 50 
with replacement.

Data and Code Availability
All data used in model calibration and validation are summarized in the Supplementary Information, with links 
provided to the repositories from which the original data can be accessed. The code for the SOMic model can be 
accessed at https://github.com/domwoolf/somic1.
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